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STABILITY OF LONGITUDINAL MOTION IN INTENSE ION BEAMS 
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Inertial confinement fusion using high energy heavy ion beams 

requires focussing of the igniting ion beams in longitudinal, as 

well as transverse, space at the pellet target. The focussing 

requirements set limits on the size of the beam emittances at the 

target, and obtaining sufficiently small emittances at the target 

requires sufficient stability in beam transport and acceleration 

from source to target, and an analysis of that stability is necessary 

for heavy ion fusion (HIF) accelerator design. Theoretical analysis 

is necessary since practical accelerator experience with high inten- 

sity non-relativistic ion beams has been limited. This analysis is 

particularly important for the case of a heavy ion induction linac, 

since previous induction linacs have been electron accelerators, 

and the highly relativistic electrons have negligible longitudinal 

motion. In this paper we present some results of our analysis of 

the stability of longitudinal motion. 

I. Equations of Motion 

The equations of longitudinal motion which we use are obtained 

by solution of Maxwell's equations with simplifying assumptions. We 

assume that the transverse (x-y) and longitudinal (z) motions of 

particles in the beam are completely decoupled with the beam length 

much greater than the beam radius. We choose the longitudinal 

distance from the center of the bunch z and the position of the 

center of the bunch s as the dependent and independent variables. 
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We will assume the motion is non-relativistic and that the center 

of the beam bunch is not accelerating but moves with constant 

speed Bc. If the beam pipe is perfectly conducting, we find the 

following equation of motion (in MKS units): 

(1) 

where e is the proton charge, q is the ion charge state, M is the 

ion mass, X is the number of ions per unit length, and g is a 

geometric factor of order unity. For the particular case of an ion 

at the center of a constant transverse density round beam of radius 

a inside a round pipe of radius b, g = 1 + 2 .Q,n (b/a). We assume 

that transverse variations simply produce some average g, which we 

treat as constant. In equation 1, we have added an external bunching 

field E, to the space charge self-field. 

Analysis of design studies of HIF accelerators indicates that 

the assumption of perfectly conducting walls may not be adequate. 

If we assume a resistive coupling per meter R', a term 

(2) 

must be added to equation 1. In sections II and III we will assume 

that the walls are perfectly conducting (R'=O) and in later sections 

we will consider the effects of non-zero R'. 

II. Envelope Equation for Longitudinal Motion 

Unperturbed longitudinal motion of a beam bunch through a 

transport system can be calculated using the envelope equation 

derived before.’ This envelope equation applies to a bunch transported 

through a system with linear bunching fields; that is 
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dE (s) . z 
EZ(s,z) = z 

The equation of motion (1) is rewritten as: 

z,, = qe dE(s) z 

i&c 

5 - K(s) z - A 31 
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(3) 

(4) 

The particle distribution which is a solution to the Vlasov equation 

with this equation of motion is: 

defined wherever the square root is real (f = 0 otherwise), and 

where N is the total number of ions in the bunch, eL is the 

longitudinal emittance, and z. is the envelope amplitude. This 

distribution has a parabolic particle density: 

A(z,s) = f(z,z's) dz' = $+- '1 - z2 
0 -1 z 2 

0 

and z. is a solution of the envelope equation: 

E2 
z" = d22.= L 3 AN 

0 ds2 -+z 2 3 _ - K(s) z. 
20 =0 

(6) 

(7) 

where the initial conditions (z,(s=O), zA(s=O)) may be chosen 

arbitrarily. 

This solution can be, and has been, used to check computer 

programs which integrate the Vlasov equation numerically, such as 

the code of Neil, Buchanan, and Cooper. 
2 

An analysis of perturbations of this distribution can also 

be used to evaluate longitudinal transport stability analytically. 

III. Stability of Space Charge Perturbations 

Following techniques previously developed by L. Smith and 
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others for analyzing transverse stability, 3,495 an analysis of the 

stability of space charge perturbations of the distribution of 

section II has been presented and in this section we summarize 

the results of the analysis. 
6 

We first consider the case of the stationary distribution, 

the particular solution of equations 4-7 in which K(s) is constant, 

and z. is chosen such that zg (0) = z: (0) = 0. Our unperturbed 

distribution is (v-z'): 

3N f,(z,v) = - 271vozo 
~\ (8) 

Stability is determined by adding a small perturbation fp(z,v,s) to 

f,(z,v) and solving the linearized Vlasov equation for f,(z,v,s) 

and $(z,s) with our solutions of the form 

fo(z,v,s) = f,(z,v) e-iwns 

and hp(z,s) = X,(z) e-iwns = 

i 

fn(z,v) dv e-iwns (9) 

Instability exists where Im(W) # 0. As reported in reference 6, the 

solutions have the following properties: 

An(z) Oc pn (&I (Legendre polynomials) 

and wn is a solution of 

"2 

+ = 4 En-$ j:"') (k3,") $ _ ;(n.2m)v)2 (lo) 

with w 2-3AN 
P 

= - - 2 z 3' 
v2 : K. 

0 

It can be shown that all wn which are solutions of (10) are real, 

which indicates that small space charge perturbations are stable, 

unlike the transverse case. 
4 
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The analysis has been extended to the case where K(s) is 

periodic, and it is found that instabilities can exist where the 

eigenfrequency of the normal mode w,, and the period of K(s) are 

near resonance. 

The largest such resonances are: 

1. A second order resonance (n = 2) which can occur if 

the phase shift of individual particle longitudinal 

motion over a period of K(s) is between 90" and 104" at 

zero current. This has a growth rate of - 1.1 per period. 

2. A fourth order resonance (n = 4) which can occur for 

longitudinal phase shifts between 45" and 57O per 

period. The growth rate is - 1.03. 

For most accelerators considered to date, such as the HIF 

induction linac, the longitudinal phase shift per period of 

structure is quite small, so periodic space charge instabilities 

can occur only in very high order n and the analysis indicates 

that these instabilities become vanishingly small. The only 

possible exception proposed to date would be a bunching ring with 

a very large (; 30°) longitudinal phase shift per turn at peak 

field. Such bunching rings should be designed to avoid the largest 

low order resonances. 

IV. Resistive Wall Instability 

Faltens' has suggested that particle motion, particularly in 

an induction linac, may show significant resistive coupling. 

In that case the equations of motion are modified as described 

in section 1. The self forces are given by 

2 2 " R' X ,tt=-9e -_qe ah 
M82=2 471~~ az MBc 



-6- FN-320 
0102.000 

The value of R' depends upon the current, acceleration and 

efficiency requirements of the induction linac; Faltens 8 suggests 

that for HIF it will be of the order of 100 n/m. 

To show the effects of resistive coupling we use an approximate 

analysis previously presented by L. Smith. 9 We start with an un- 

perturbed distribution with constant density in z and with a step 

function in z': 

N’ 
f,(z,z') = x i 

S(z'+A) - S(z'-A) 

and consider perturbing waves of the form 

fl(z,z's) = fl(z') e i(kz-ws) 

We then solve the linearized Vlasov equation to find w(k) 

-i(w-kz') fl(z') + CC& (-iAk-B) 
azl i 

flG')dz' = o 

The result is: w ' = kzA2 + k2AN' - ikBN' 

(11) 

(12) 

(13) 
2 w = k2A2 + k 

-i k # N'R' 
MBc 

Instability can occur since Im(w) # 0. 

With parameters suitable for fusion induction linacs, the waves 

of equations 11-13 show some interesting characteristics: 

1. The requirement of small energy spread for final 

focussing sets A quite small, so that in equation 13 

the velocity dependent term k2A2 is negligible 

to a first approximation. As a corollary to this, 

the wave velocity (Re(w/k)) of disturbances in the 

bunch is much greater than individual particle 

velocities. 
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2. The space charge term of equation (13) k2AN' is 

usually larger than the resistive term ikBN' in 

absolute value, if R' <I 200 Q/m. With this approxi- 

mation, we have Re(w) s ? F--l k AN' and we find that 

the phase velocity (Re(w/k)) is independent of k, 

so that propagating wave packets do not disperse 

but travel together coherently. 

3. Also with space charge dominant we have the 

relation 

1 k RN' Im(w): - 7 k 1 qeRIT, 
Iklm "= - Ikl' 

so that the magnitude of this growth parameter is 

independent of k. Waves change in amplitude as &lm(m)s 

and the sign of Im(w) is correlated with Re(o/k) so 

that for Re(w/k) > 0 ("fast" wave) we have Im(w) < 0 and 

the wave decays, while with Re(w/k) < 0 ("slow" wave) 

we have Im (w) > 0 and the wave grows. 

Typical parameters for HIF can be substituted into equation 

(13) to find sample values of Re(w/k) and Im(w). For example, 

with R' = 100 n/m, N' = 3 x 1013 ions/m., q = 4, g = 2, M = 238 mp, 

and B = .33, we find 

1) Re($ = 7.4 x 10e3 (14) 

2) jIm( = 2 x 10e3 m-1 = (500 m) -1 

The growth distance is about 500 m., which is less than the 

total length of the IlIF induction linac (a few km.), but it 

is a suostantial fraction of it. 

This wave motion in a beam bunch can be simulated numerically. 

In figures 1 we show wave propagation in a perturbed beam bunch, 

calculated using the program of Neil, Buchanan and Cooper, which 
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numerically integrates the longitudinal Vlasov equation. In this 

case an initial disturbance at the center of the bunch splits 

into forward-going "fast" and backward "slow" wave packets which 

decay and grow respectively. The behavior agrees closely with 

equation (13) and the discussion above. 

V. Effect of the Resistive Coupling on Beam Stability 

In the previous section, we demonstrated that a resistive 

coupling can lead to growth of perturbations in a beam bunch 

with HIF parameters. We need to determine the amount of growth 

by resistive coupling which can be permitted without endangering 

HIF performance. To estimate this, we must include the effects 

of the finite bunch size, which means that a propagating disturbance 

will reach the end of the bunch in a finite time. 

A naive expectation is that a growing "slow" wave will reach 

the end of the bunch, be immediately reflected to a decaying "fast" 

wave by the external bunching field, and therefore produce no net 

instability. With this expectation, we can set a limit on the 

allowable growth by requiring that an individual wave packet not 

grow by more than some factor F in traversing the bunch length 

LB. This requirement can be written as: 

G = IIm(m) * Re ;:,kl, 2 q @CR' LB < en 1 F 1 
(14) 

For the sample case of section 4, with LB = 10 m., we have 

G g 2.5 or F > 12. This amount of growth may be tolerable 

provided that initial wave packet perturbations are limited 

tQ a few per cent. 

Numerical simulation seems to indicate that longitudinal 

motion does not fit this naive picture. To observe wave packet 
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reflection at the bunch end, we calculate a case with R' = 0 

so that waves neither grow nor decay. In this example (shown in 

figures 2) the disturbances propagate to the bunch ends from the 

center in about 800 m., then remain localized at the ends for 

800 m. while particle motions reverse, and then propagate back 

toward the center. Wave packet reflection is substantially 

delayed. 

The same type of delayed reflection exists in numerical 

simulation with R' # 0.. However substantial wave packet distortion 

occurs on reflection and this distortion is not fully understood. 

Future analysis will attempt to understand this reflection distortion, 

and to determine its importance in describing the stability of 

longitudinal transport. 

ACKNOWLEDGMENTS 

We thank A. Faltens and L. Smith for many useful conversations 

on this problem. We also thank E. Close for programming and 

graphics assistance. 



-IO- FN-320 
0102.000 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

D. Neuffer, IEEE Trans. on Nuclear Science, NS-26, 3031(1979). 

V. K. Neil, H. L. Buchanan, and R. K. Cooper, Particle 

Accelerators, 9, 207(1979). 

L. Smith, S. Chattopadhyay, I. Hofmann, and L. J. Laslett, 

"Stability of the K.-V. Distribution in Long Periodic 

Systems", LBL HI-FAN-13, -14, and -15(1979). 

R. L. Glucksturn, Proceedings of the NAL Linear Accelerator 

Conference, September 1970, 823(1971). 

F. J. Sacherer, Ph.D. Thesis, University of California, 

Berkeley, UCRL-18454(196S). 

D. Neuffer, to be published in Particle Accelerators (1980). 

A. Faltens, 1979 HIF Workshop, Berkeley, California. 

A. Faltens, private communication (1979). 

L. Smith, unpublished communication (1974). 



-ii- 

FIGURE CAPTIONS 

FN-320 
0102.000 

l:A-D. Wave propagation in a perturbed beam bunch. In this 

case we have R' = 200 Q/m., N' 
max = 3 x 1013 ions/m., 

q = 4, g = 2, M = 238 m 
P' 

and B = .35. An initial 

disturbance shown in A (s = 0 m.) separates into 

"fast" and "slow" waves at B (s = 100 m.) with the 

"fast" wave rapidly decaying and the "slow" wave growing 

at C (s = 300 m.). At D (s = 500 m.) the waves have 

reached the ends of the bunch. 

Z:A-F. Wave propagation and reflection with R' = 0. The other 

parameters (N', q, g, M, 8) are the same as in Figures 1, 

A-D, except the beam bunch is parabolic. In this case 

the "fast" and "slow" waves travel to the ends of the 

bunch from s = 0 m., to s = 800 m. (A, B, C). From 

s = 800 to s = 1600 (C, D, E) the beam bunch reflects 

the disturbance. The reflected waves (reversed in sign 

and direction) appear clearly in figure F (s = 2000 m.). 

Reflection is not instantaneous in any usual approximation 

Each of these figures (l(A-D), 2(A-F)) contains two plots. 

The upper plots graph the current I as a function of 

position r, where r = -6cz. The lower plots are contour 

plots of the distribution function f(AE,r) which is 

proportional to f(z',z). In both plots the horizontal 

axis is position r. 
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